Cellulose-based electrical insulation materials : Dielectric and mechanical properties

Abstract: The reliability of the generation and distribution of electricity is highly dependent on electrical insulation and is essential for the prosperity of our society and a ubiquitous part of our everyday life. The present study shows how some important material properties affect the electrical properties of cellulose-based electrical insulation systems which are used together with mineral oil in high-voltage transformers. Among other things, the effects of paper density and of the lignin content of the fibres on the dielectric response and charge transport of the papers have been studied.The underlying mechanisms of the inception and propagation of streamers, responsible for the most costly failures in transformers, at the oil-solid interface have been investigated and the important role of paper morphology on streamer propagation has been demonstrated. It was also shown that for polymers with permittivities close to that of the oil, the inception voltage was higher than with polymers with higher permittivities.Fibres were also modified prior to paper sheet preparation in attempts to improve the mechanical and dielectric properties. The properties of papers containing cellulosic micro- and nanofibrils and SiO2 and ZnO nanoparticles indicate that these additives can indeed be used to improve both the mechanical and dielectric properties. For example, a three-layered structure with two papers laminated together with a thin layer of microfibrillated cellulose also showed an increased DC breakdown strength by 47 % compared to a single-layer paper with a similar thickness.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)