Redox models in chemistry : A depiction of the conceptions held by secondary school students of redox reactions

Abstract: According to previous research, students show difficulties in learning redox reactions. By the historical development different redox models exist to explain redox reactions, the oxygen model, the hydrogen model, the electron model and the oxidation number model. This thesis reports about three studies concerning conceptions held by secondary school students of redox reactions. A textbook analysis is also included in the thesis. The first study was an investigation of the students’ use of redox models in inorganic contexts, their use of the activity series of metals, and the students’ ability to transfer redox knowledge. Then the students’ work with an open-ended biochemical task, where the students had access of the textbook was studied. The students talk about redox reactions, the questions raised by the students, what resources used to answer the questions and what kind of talk developed were investigated. A textbook analysis based on chemistry books from Sweden and one book from England was performed. The redox models used as well as the dealing with redox related learning difficulties was studied. Finally, the students’ conceptions about redox in inorganic, organic and biochemistry after completed chemistry courses were studied. The results show that the students were able to use the electron model as a tool to explain inorganic redox reactions and the mutuality of oxidation and reduction was fundamental. The activity series of metals became a tool for the prediction of reducing agent in some reactions. Most of the students rejected that oxygen is a prerequisite for a redox reaction. In the biochemical task the resource most used to answer the raised questions were the students’ consultation of the textbook – together or individually. Most questions resulted in short answers and the majority of these questions were answered. Questions concerning redox were analysed by the students and integrated into a chemical context but they could neither identify the substances oxidised or reduced nor couple the concepts to transfer of hydrogen atoms. The majority of these redox questions became unanswered. The textbook helped the students to structure a poster as well as to answer basic chemistry questions. For questions about organic and biochemical redox, the book was of no help. The textbook analysis showed that all historical redox models are used. Different models are used in inorganic, organic and biochemistry. The mutuality of oxidation and reduction is treated differently in subject areas. The textbooks did not help the reader linking the different redox models that were used. Few redox-related learning difficulties are addressed in the books. After completed chemistry courses the students had major problems to justify a redox reaction explained by transfer of hydrogen atoms both in the organic and biochemistry examples.