Development of Energy-based Damage and Plasticity Models for Asphalt Concrete Mixtures

University dissertation from KTH Royal Institute of Technology

Abstract: Characterizing the full range of damage and plastic behaviour of asphalt mixtures under varying strain-rates and stress states is a complex and challenging task. One reason for this  is partly due to the strain rate and temperature dependent nature of the material as well as the variation in the properties of the constituent materials that make up the composite asphalt mixture. Existing stress-based models for asphalt concrete materials are developed based on mechanics principles, but these models are, however, limited in their application for actual pavement analysis and design since rate dependency parameters are needed in the constitutive model to account for the influence of the strain rate on the stress-based yield and evolution criteria. Till date, we are yet to arrive at simple and comprehensive constitutive models that can be used to model the behaviour of asphalt mixture over a wide range of strain-rate which is experienced in the actual pavement sections. The aim of this thesis is to develop an increased understanding of the strength and deformation mechanism of asphalt mixtures through multi-scale modeling and to develop simple and comprehensive continuum models to characterize the non-linear behaviour of the material under varying stress-states and conditions. An analysis framework is developed for the evaluation of the influence of asphalt mixture morphology on its mechanical properties and response using X-Ray CT and digital image processing techniques. The procedure developed in the analysis framework is then used to investigate the existence of an invariant critical energy threshold for meso-crack initiation which serves as the basis for the development of a theory for the development of energy-based damage and plastic deformation models for asphalt mixtures. A new energy-based viscoelastic damage model is developed and proposed based on continuum damage mechanics (CDM) and the thermodynamics of irreversible processes. A second order damage variable tensor is introduced to account for the distributed damage in the material in the different principal damage directions. In this way, the material response in tension and compression can be decoupled and the effects of both tension- and compression stress states on the material behaviour can be accounted for adequately. Based on the finding from the energy-based damage model, an equivalent micro-crack stress approach is developed and proposed for the damage and fracture characterization of asphalt mixtures. The effective micro-crack stress approach takes account of the material stiffness and a critical energy threshold for micro-crack initiation in the characterization of damage and fracture properties of the mixture. The effective micro-crack stress approach is developed based on fundamental mechanics principles and it reduces to the Griffith's energy balance criterion when purely elastic materials are considered without the need for the consideration of the surface energy and a crack size in the determination of the fracture stress. A new Continuum Plasticity Mechanics (CPM) model is developed within the framework of thermodynamics to describe the plastic behaviour of asphalt concrete material with energy-based criteria derived for the initiation and evolution of plastic deformation. An internal state variable termed the "plasticity variable" is introduced to described the distributed dislocation movement in the microstructure. The CPM model unifies aspects of existing elasto-plastic and visco-plastic theories in one theory and shows particular strength in the modeling of rate-dependent plastic behaviour of materials without the need for the consideration of rate dependency parameters in the constitutive relationships. The CPM model is further extended to consider the reduction in the stiffness properties with incremental loading and to develop a unified energy-based damage and plasticity model. The models are implemented in a Finite Element (FE) analysis program for the validation of the models. The result shows that the energy-based damage and plastic deformation models are capable of predicting the behaviour of asphalt concrete mixtures under varying stress-states and strain-rate conditions. The work in this thesis provides the basis for the development of more fundamental understanding of the asphalt concrete material response and the application of sound and solid mechanics principles in the analysis and design of pavement structures.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)