Learning-by-modeling : Novel Computational Approaches for Exploring the Dynamics of Learning and Self-governance in Social-ecological Systems

University dissertation from Stockholm : Stockholm Resilience Centre, Stockholm University

Abstract: As a consequence of global environmental change, sustainable management and governance of natural resources face critical challenges, such as dealing with non-linear dynamics, increased resource variability, and uncertainty. This thesis seeks to address some of these challenges by using simulation models. The first line of research focuses on the use of learning-by-doing (LBD) for managing a renewable resource, exemplified by a fish stock, and explores LBD in a theoretical model using artificial intelligence (Paper I and II). The second line of research focuses on the emergence of different forms of self-governance and their interrelation with the dynamics of trust among fishers when harvesting a shared resource, using an agent-based model. This model is informed by qualitative data based on small-scale fisheries in Mexico (Paper III and IV). Paper I and II find that the most sustainable harvesting strategy requires that the actor values current and future yields equally, cautiously experiments around what is perceived as the best harvest action, and rapidly updates its ‘mental model’ to any perceived change in catch. More specifically, Paper II reveals that understanding these aspects in relation to the type of change can yield not only increased performance, but also, and more importantly, increased robustness to both fast and slow changes in resource dynamics. However, when resource dynamics include the possibility of a more fundamental shift in system characteristics (a regime shift), LBD is problematic due to the potential for crossing a threshold, resulting in possible persistent reductions in harvests (Paper I). In Paper III, results indicate that cooperative forms of self-governance are more likely to establish and persist in communities where fishers’ have prior cooperative experience, fishers’ trustworthiness is more or less equal, and that this likelihood increases when resource availability fluctuates seasonally. Finally, to achieve a transformation toward more cooperative forms of self-governance, interventions are required that can strengthen both financial capital and trust among the members of the cooperatives (Paper IV). The unique contribution of this thesis lies in the method for ‘quantitatively’ studying LBD, the stylized model of a small-scale fishery, and the analysis of the two models to advance our understanding of processes of learning and self-governance in uncertain and variable social-ecological environments. Together, the results shed light on how social and ecological factors and processes co-evolve to shape social-ecological outcomes, as well as contributing to the development of novel methods within the emerging field of sustainability science.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.