Laser sintered materials with Non-equilibrium structures

University dissertation from Stockholm : Department of Materials and Environmental Chemistry, Stockholm University

Abstract: This thesis is focused on achieving materials with non-equilibrium structures fabricated by high-energy laser sintering. The chosen precursor materials have rigid and inert structures like high-melting point ceramics or metals. It was necessary to use real-time monitoring of temperature and spectrum profiles for selecting the optimal laser parameters for the laser sintering process. This monitoring was done by an off-axial setup that also controls the surface morphologies during the laser irradiation process. The laser focal spot receives very high temperatures and subsequent extreme cooling rates within a short time period. New non-equilibrium structures will emerge ruled by kinetics, huge temperature gradients or stresses and freeze by quenching in solid state. These material structures were found to form at different length scales from nano- to macro-level, frequently by a hierarchical ordering. This opens a method to engineer materials with both hierarchical and non-equilibrium structures by a single operation in both metal and ceramics by laser sintering. In the Co-Cr-Mo alloy system, structures on three levels of lengths were observed, namely i) nano-level structures dominated by the grain boundary segregation; ii) micron-level structures characterized by the interlocked clusters of columns; and iii) macro-level structures defined by the selected laser scan patterns. The non-equilibrium structures of the Co-Cr-Mo alloy are related to mechanical, corrosion and bio-compatibility properties. In ZrO2 ceramics, the final product had a non-equilibrium nano- and micron-sized structure created by uneven absorption of laser energy and rupture. The structure inside the micron-sized grains is formed through ordered coalescence of nano-crystals. Properties of the laser sintered materials were established and related to the observed structures. The materials properties might be tailored by controlling the structures in different levels and potential applications of the new materials will be given.