Stellar Surface Structures and the Astrometric Serach for Exoplnaets

Abstract: Measuring stellar parallax, position and proper motion is the task of astrometry. With the development of new and much more accurate equipment, different noise sources are likely to affect the very precise measurements made with future instruments. Some of these sources are: stellar surface structures, circumstellar discs, multiplicity and weak microlensing. Also exoplanets may act as a source of perturbation.In this thesis I present an investigation of stellar surface structures as a practical limitation to ultra-high-precision astrometry. The expected effects in different regions of the HR-diagram are quantified. I also investigate the astrometric effect of exoplanets, since their astrometric detection will be possible with future projects such as Gaia and SIM PlanetQuest.Stellar surface structures like spots, plages and granulation produce small surface areas of different temperatures, i.e. of different brightness, which will influence integrated properties such as the total flux (zeroth moment of the brightness distribution), radial velocity and photocenter position (first moments of the brightness distribution). Also the third central moment of the brightness distribution, interferometrically observable as closure phase, will vary due to irregularities in the brightness distribution. All these properties have been modelled, using both numerical simulations and analytical methods, and statistical relations between the variations of the different properties have been derived.Bright and/or dark surface areas, randomly spread over the stellar surface, will lead to a binomial distribution of the number of visible spots and the dispersion of such a model will be proportional topN, where N is the number of spots or surface structures. The dispersion will also be proportional to the size of each spot, A. The dispersions of the integrated properties are therefore expected to be/ ApN. It is noted that the commonly used spot filling factor, f / AN, is notthe most relevant characteristic of spottiness for these effects.Both the simulations and the analytic model lead to a set of statistical relations for the dispersions or variations of the integrated properties. With ,e.g. knowledge of the photometric variation, m, it is possible to statistically estimate the dispersions for the other integrated properties. Especially interesting is the variation of the observed photocenter, i.e. the astrometric jitter. A literature review was therefore made of the observed photometric and radial-velocity variations for various types of stars. This allowed to map the expected levels of astrometric jitter across the HR diagram.From the models it is clear that for most stellar types the astrometric jitter due to stellar surface structures is expected to be of order 10 μAU or greater. This is more than the astrometric displacement typically caused by an Earth-sized exoplanet in the habitable zone of a long-lived main-sequence star, which is about 1–4 μAU. Only for stars with extremely low photometric variability (< 0.5 mmag) and low magnetic activity, comparable to that of the Sun, will the astrometric jitter be of order 1 μAU, sufficient to allow astrometric detection of an Earth-sized planet in the habitable zone. While stellar surface structure may thus seriously impair the astrometric detection of small exoplanets, it has in general negligible impact on the detection of large (Jupiter-size) planets.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)