Parabolic Synthesis

University dissertation from Lund : Lund University

Abstract: Many consumer products, such as within the computer areas, computer graphics, digital signal processing, communication systems, robotics, navigation, astrophysics, fluid physics, etc. are searching for high computational performance as a consequence of increasingly more advanced algorithms in these applications. Until recently the down scaling of the hardware technology has been able to fulfill these higher demands from the more advanced algorithms with higher clock rates on the chips. This that the development of hardware technology performance has stagnated has moved the interest more over to implementation of algorithms in hardware. Especially within wireless communication the desire for higher transmission rates has increased the interest for algorithm implementation methodologies. The scope of this thesis is mainly on the developed methodology of parabolic synthesis. The parabolic synthesis methodology is a methodology for implementing approximations of unary functions in hardware. The methodology is described with the criteria's that have to be fulfilled to perform an approximation on a unary function. The hardware architecture of the methodology is described and to this a special hardware that performs the squaring operation. The outcome of the presented research is a novel methodology for implementing approximations of unary functions such as trigonometric functions, logarithmic functions, as well as square root and division functions etc. The architecture of the processing part automatically gives a high degree of parallelism. The methodology is founded on operations that are simple to implement in hardware such as addition, shifts, multiplication, contributes to that the implementation in hardware is simple to perform. The hardware architecture is characterized by a high degree of parallelism that gives a short critical path and fast computation. The structure of the methodology will also assure an area efficient hardware implementation.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)