Time of Flight Estimation for Radio Network Positioning

Abstract: Trilateration is the mathematical theory of computing the intersection of circles. These circles may be obtained by time of flight (ToF) measurements in radio systems, as well as laser, radar and sonar systems. A first purpose of this thesis is to survey recent efforts in the area and their potential for localization. The rest of the thesis then concerns selected problems in new cellular radio standards as well as fundamental challenges caused by propagation delays in the ToF measurements, which cannot travel faster than the speed of light. We denote the measurement uncertainty stemming from propagation delays for positive noise, and develop a general theory with optimal estimators for selected distributions, which can be applied to trilateration but also a much wider class of estimation problems.The first contribution concerns a narrow-band mode in the long-term evolution (LTE) standard intended for internet of things (IoT) devices. This LTE standard includes a special position reference signal sent synchronized by all base stations (BS) to all IoT devices. Each device can then compute several pair-wise time differences that correspond to hyperbolic functions. The simulation-based performance evaluation indicates that decent position accuracy can be achieved despite the narrow bandwidth of the channel.The second contribution is a study of how timing measurements in LTE can be combined. Round trip time (RTT) to the serving BS and time difference of arrival (TDOA) to the neighboring BS are used as measurements. We propose a filtering framework to deal with the existing uncertainty in the solution and evaluate with both simulated and experimental test data. The results indicate that the position accuracy is better than 40 meters 95% of the time.The third contribution is a comprehensive theory of how to estimate the signal observed in positive noise, that is, random variables with positive support. It is well known from the literature that order statistics give one order of magnitude lower estimation variance compared to the best linear unbiased estimator (BLUE). We provide a systematic survey of some common distributions with positive support, and provide derivations and summaries of estimators based on order statistics, including the BLUE one for comparison. An iterative global navigation satellite system (GNSS) localization algorithm, based on the derived estimators, is introduced to jointly estimate the receiver’s position and clock bias.The fourth contribution is an extension of the third contribution to a particular approach to utilize positive noise in nonlinear models. That is, order statistics have been employed to derive estimators for a generic nonlinear model with positive noise. The proposed method further enables the estimation of the hyperparameters of the underlying noise distribution. The performance of the proposed estimator is then compared with the maximum likelihood estimator when the underlying noise follows either a uniform or exponential distribution.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.