The influence of inertia on the rotational dynamics of spheroidal particles suspended in shear flow

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: Dispersed particle flows occur in many industrial, biological and geophysical applications. The knowledge of how these flow behave can for example lead to improved material processes, better predictions of vascular diseases or more accurate climate models. These particle flows have certain properties that depend on single particle motion in fluid flows and especially how they are distributed both in terms of spatial position and, if they are non-spherical, in terms of orientation. Much is already known about the motion of perfectly spherical particles. For non-spherical particles, apart from their translation, it is important to know the the rotational motion due to local velocity gradients. Such studies have usually been restricted by the assumption that particles are extremely small compared to fluid length scales. In this limit, both inertia of the particle and inertia of the fluid can be neglected for the particle motion. This thesis gives a complete picture of how a spheroidal particle (a particle described by a rotation of an ellipse around one of its principal axes) behave in a linear shear flow when including both fluid and particle inertia, using numerical simulations. It is observed that this very simple problem possess very interesting dynamical behavior with different stable rotational states appearing as a competition between the two types of inertia. The effect of particle inertia leads to a rotation where the mass of the particle is concentrated as far away from the rotational axis as possible, i.e.\ a rotation around the minor axis. Typically, the effect of fluid inertia is instead that it tries to force the particle in a rotation where the streamlines of the flow remain as straight as possible. The first effect of fluid inertia is thus the opposite of particle inertia and instead leads to a particle rotation around the major axis. Depending on rotational state, the particles also affect the apparent viscosity of the particle dispersion. The different transitions and bifurcations between rotational states are characterized in terms of non-linear dynamics, which reveal that the particle motion probably can be described by some reduced model. The results in this theses provides fundamental knowledge and is necessary to understand flows containing non-spherical particles.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)