Considering meteorological variation in assessments of environmental quality trends

University dissertation from Linköping : Linköpings universitet

Abstract: Time series of environmental data are collected to monitor the effectiveness of new emission reduction policies or to determine the general state of the environment. However, small gradual changes in such variables can easily be concealed by large fluctuations caused by prevailing weather conditions. Hence, there is a real need for procedures that facilitate separation of such natural variation from anthropogenic effects.Taking meteorological or hydrological variables into consideration in a trend analysis can be done in several ways. The technique chosen to accomplish this objective depends on characteristics of the data set, for example the length of the time series and sampling frequencies, and the kind of relationships that exist between the response variable and the covariates. Two different approaches were examined in the studies underlying this thesis: multivariate non-parametric tests and parametric normalisation procedures. The non-parametric trend test proposed here was newly desinged, thus it was also necessary to conduct simulation studies to examine the performance of this method. By comparison, normalisation techniques have been used over the past few decades mainly to adjust for the impact of meteorological effects on air quality data. The choice of explanatory variables for such procedures was studied: first by examining variable selection procedures based on cross-validation, paying special attention to serially correlated response data; and secondly by considering variables derived from complex physics-based models as alternatives to measured variables. A number of other aspects that might influence the ability to detect trends were also explored, including level shifts due to instrument malfunctions.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.