Soil Modification By Adding Small Amounts of Soil Stabilizers : Impact of Portland Cement and the Industrial By-Product Petrit T

Abstract: This licentiate thesis presents results of laboratory experiments regarding the effectiveness of adding small amounts of binders in order to modify and improve the mechanical performance of low organic clayey silt soil. Two types of binders have been used i.e. cement and an industrial by-product named Petrit T. The study covered both the immediate and longterm effects on the soil material. Binder content was added by soil dry weight, Petrit T at 2, 4 and 7% and cement at 1, 2, 4 and 7%. An experimental program has been carried out, including tests of consistency limits, unconfined compressive strength, density, solidification, grain size distribution (by laser particle size analyzer) and pH. The tests were conducted on the treated soil with varying binder contents and after different curing periods, i.e. after 7, 14, 28, 60 and 90 days. Results show that cement is more effective in improving the physical and engineering properties than Petrit T. Plasticity index decreases after treatment and leads to an immediate increase in workability. This is found directly after treatment and it increases with time. Soil density increased, whilst water content decreased, with increasing binder content and curing time. Particle size distribution of soil is changed toward the granular side by the reduction of the particles in clay size fraction and increasing silt size particles after 28 days of treatment. Both binder types resulted in an immediate effect on the soil pH value. This value increased to 12.3 after adding 7% of the binder and then it gradually decreased as curing time increased. The cement treated soil exhibits a more brittle failure behavior than the soil treated with Petrit T. In this case a more ductile behavior was observed. The findings confirmed that adding small binder contents of cement and by-product Petrit T significantly improved the physical and mechanical properties of soil, which can contribute to reduce the environmental threats and costs that are associated with using high binder contents in various construction projects.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)