Impact of Surface Structures onDeposition and Erosion in a Tokamak

Abstract: Fusion is a potentially unlimited and environmentally friendly energy source for human society in the future. However, along the way towards the application of fusion energy there are still unresolved complications. Among them, deposition and erosion are two critical issues. Deposition of fuel and impurities brings potential long-term fuel retention which may generate safety issues and limit the economic efficiency of fusion devices. Moreover, the erosion of the vacuum vessel wall in a fusion device generates impurities which contaminate core plasma and can restrict the life time of plasma facing component. The work in this thesis focuses on deposition and erosion on tiles in the JET-ILW project, which consist of tungsten (or tungsten coating carbon fibre composited) in the divertor and beryllium in limiters.For the deposition issue, micro ion beam analysis (µ-IBA) was used for observing deuterium and beryllium distributions over tile surfaces. The surface topography was obtained from SEM, optical microscope and confocal laser scan microscope. Distribution maps from IBA were compared with surface topography. To explain experimental results, modelling of ion trajectories was applied on real and artificial surfaces. Micro IBA results show that deuterium and beryllium accumulated in depressed areas, e.g. pits, cracks or craters. Modelling implies that ion gyration, surface roughness and inclination of the magnetic field could to some extent explain this non-uniform distribution of deuterium and beryllium. The same kind of issue, although on different scale length, occurs also for penetration of impurities into artificial castellation grooves, also studied experimentally in the thesis.For the erosion issue, the thesis includes analysis of a limiter marker tile which is designed for observing material erosion in JET. A new method to acquire erosion data from such marker tiles is proposed, by combining micro IBA and SEM image.  This method could separate the influence on IBA from roughness, a problem in applying IBA on rough surface. Similar Technique is applied to improve the interpretation of IBA measurements of deep penetration of deuterium into layered surface structures.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)