Coding to cure : NMR and thermodynamic software applied to congenital heart disease research

Abstract: Regardless of scientific field computers have become pivotal tools for data analysis and the field of structural biology is not an exception. Here, computers are the main tools used for tasks including structural calculations of proteins, spectral analysis of nuclear magnetic resonance (NMR) spectroscopy data and fitting mathematical models to data. As results reported in papers heavily rely on software and scripts it is of key importance that the employed computational methods are robust and yield reliable results. However, as many scientific fields are niched and possess a small potential user base the task to develop necessary software often falls on researchers themselves. This can cause divergence when comparing data analyzed by different measures or by using subpar methods. Therein lies the importance of development of accurate computational methods that can be employed by the scientific community.The main theme of this thesis is software development applied to structural biology, with the purpose to aid research in this scientific field by speeding up the process of data analysis as well as to ensure that acquired data is properly analyzed. Among the original results of this thesis are three user-friendly software: COMPASS - a resonance assignment software for NMR spectroscopy data capable of analyzing chemical shifts and providing the user with suggestions to potential resonance assignments, based on a meticulous database comparison. CDpal - a curve fitting software used to fit thermal and chemical denaturation data of proteins acquired by circular dichroism (CD) spectroscopy or fluorescence spectroscopy. PINT - a line shape fitting and downstream analysis software forNMRspectroscopy data, designed with the important purpose to easily and accurately fit peaks in NMR spectra and extract parameters such as relaxation rates, intensities and volumes of peaks.This thesis also describes a study performed on variants of the life essential regulatory protein calmodulin that have been associated with the congenital life threatening heart disease long QT syndrome (LQTS). The study provided novel insights revealing that all variants are distinct from the wild type in regards to structure and dynamics on a detailed level; the presented results are useful for the interpretation of results from protein interaction studies. The underlying research of this paper makes use of all three developed software, which validates that all developed methods fulfil a scientific purpose and are capable of producing solid results.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.