Robust industrial automation software: outsets for non-determinism and real-time execution

Abstract: Studies about the industrial standard IEC 61499 and its relation to the RTFM Model of Computation represent the basis of this thesis. An overview of industrial automation software in general and in the scope of Svenska Kraftnät introduces the subject of software related issues. The thesis focuses on selected properties, which are important for software development to improve the robustness of industrial automation software. Among others, timing is essential due to its importance in real-time applications. An example case of the nuclear power plant Forsmark in Sweden illustrates problems correlated with timing issues and makes the lack of an overall system modelling (including timing) evident. A review of the relevant industrial standards for software development in industrial applications provides a background for various aspects of software compliance to safety requirements. Special attention lies on the standards IEC 61131 and IEC 61499 for industrial software development and their programming and execution model. The presented RTFM framework defines a concurrent model of execution based on tasks and resources together with a timing semantics that was designed from the outset for the development of embedded real-time systems. It can serve as a scheduling and resource management for the run-time environments of industrial applications, while addressing the aforementioned issues. Mappings from the functional layer (IEC 61499 function block networks) and safety layer (PLCopen safety function blocks) to RTFM show the applicability and possibility of using IEC 61499 as an overall, distributed, and hierarchical model. A discussion on options for future work presents choices to pursue the second half of the PhD studies. Formal methods for program specification and verification open up an interesting path to further increase the robustness of industrial automation software.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)