Aspects of Crack Growth in Single-Crystal Nickel-Base Superalloys

Abstract: This Licentiate of Engineering thesis is a product of the results generated in the research project KME-702, which comprises modelling, microstructure investigations and material testing of cast nickel-base superalloys.The main objective of this work is to model the fatigue crack propagation behaviour in single-crystal nickel-base superalloys. To achieve this, the influence of the crystal orientations on the cracking behaviour is assessed. The results show that the crystal orientation is strongly affecting the material response and must be accounted for. Furthermore, a linear elastic crack driving force parameter suitable for describing crystallographic cracking has been developed. This parameter is based on resolved anisotropic stress intensity factors and is able to predict the correct crystallographic cracking plane after a transition from a Mode I crack. Finally, a method to account for inelastic deformations in a linear elastic fracture mechanics context was investigated. A residual stress field is extracted from an uncracked finite-element model with a perfectly plastic material model and superimposed on the stress field from the cracked model with a linear elastic material model to account for the inelastic deformations during the determination of the crack driving force. The modelling work is validated by material testing on two different specimen geometries at different temperatures.This Licentiate of Engineering thesis consists of two parts, where Part I gives an introduction and background to the research area, while Part II consists of three papers.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.