An experimental approach on linear synthetic inertia

Abstract: The interest in renewable energy has significantly increased in the last decades which has led to an increased amount of renewable energy sources in the grid. In the Nordic grid, the major contribution to renewable energy is hydro power and wind power and an increase in the amount of wind power is expected in the future. The increase in wind power and decommissioning of nuclear power is expected to decrease the mechanical inertia in the system which helps to stabilise the electrical grid frequency. The inertia is expected to decrease by a factor of two within 20 years and other solutions for frequency stability must be implemented to assure a stable power system. At Uppsala University several projects are investigating how grid-connected energy storages can increase the frequency stability with a high penetration of intermittent renewable energy sources. In this thesis, a linear synthetic inertia control algorithm is implemented on a national Instruments FPGA for controlling the power flow from a supercapacitor energy storage via a two-level three-phase inverter. The control strategy is evaluated both via simulations and experimental tests in a nano grid. The results of the simulations and experimental work are presented and show that it is possible to calculate the frequency derivative in real time to reduce the frequency ROCOF and nadir. The results of the increased frequency stability are presented.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)