The Physical Axon : Modeling, Simulation and Electrode Evaluation

Abstract: Electrodes are used in medicine for detection of biological signals and for stimulating tissue, e.g. in deep brain stimulation (DBS). For both applications, an understanding of the functioning of the electrode, and its interface and interaction with the target tissue involved is necessary. To date, there is no standardized method for medical electrode evaluation that allows transferability of acquired data. In this thesis, a physical axon (Paxon) potential generator was developed as a device to facilitate standardized comparisons of different electrodes. The Paxon generates repeatable, tuneable and physiological-like action potentials from a peripheral nerve. It consists of a testbed comprising 40 software controlled 20 μm gold wires embedded in resin, each wire mimicking a node of Ranvier. ECG surface Ag-AgCl electrodes were systematically tested with the Paxon. The results showed small variations in orientation (rotation) and position (relative to axon position) which directly impact the acquired signal. Other electrode types including DBS electrodes can also be evaluated with the Paxon.A theoretical comparison of a single cable neuronal model with an alternative established double cable neuron model was completed. The output with regards to DBS was implemented to comparing the models. These models were configured to investigate electrode stimulation activity, and in turn to assess the activation distance by DBS for changes in axon diameter (1.5-10 μm), pulse shape (rectangular biphasic and rectangular, triangular and sinus monophasic) and drive strength (1-5 V or mA). As both models present similar activation distances, sensitivity to input shape and computational time, the neuron model selection for DBS could be based on model complexity and axon diameter flexibility. An application of the in-house neuron model for multiple DBS lead designs, in a patient-specific simulation study, was completed. Assessments based on the electric field along multiple sample planes of axons support previous findings that a fixed electric field isolevel is sufficient for assessments of tissue activation distances for a predefined axon diameter and pulse width in DBS.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.