High Efficiency Microwave Amplifiers and SiC Varactors Optimized for Dynamic Load Modulation

University dissertation from Chalmers University of Technology

Abstract: The increasing use of mobile networks as the main source of internet connectivity is creating challenges in the infrastructure. Customer demand is a moving target and continuous hardware developments are necessary to supply higher data rates in an environmentally sustainable and cost effective way. This thesis reviews and advances the status of realizing wideband and high efficiency power amplifiers, which will facilitate improvements in network capacity and energy efficiency. Several demonstrator PAs are proposed, analyzed, designed, and characterized: First, resistive loading at higher harmonics in wideband power amplifier design suitable for envelope tracking (ET) is proposed. A 40 dBm decade bandwidth 0.4–4.1 GHz PA is designed, with 10–15 dB gain and 40–62% drain efficiency. Its versatility is demonstrated by digital pre-distortion (DPD) linearized measurements resulting in adjacent channel leakage ratios (ACLR) lower than −46 dBc for various downlink signals (WCDMA, LTE, WiMAX). Second, a theory for class-J microwave frequency dynamic load modulation (DLM) PAs is derived. This connects transistor technology and load network requirements to enable power-scalable and bandwidth conscious designs. A 38 dBm PA is designed at 2.08 GHz, maintaining efficiencies >45% over 8 dB of output power back-off (OPBO) dynamic range. From this pre-study a fully packaged 86-W peak power version at 2.14 GHz is designed. ACLR after DPD is −46 dBc at a drain efficiency of 34%. For DLM PAs there is a need for varactors with large effective tuning range and high breakdown voltage. For this purpose, SiC Schottky diode varactors are developed with an effective tuning range of 6:1 and supporting a 3:1 tuning ratio at 36 V of RF swing. Nonlinear characterization to enable Q-factor extraction in the presence of distortion is proposed and demonstrated by multi-harmonic active source- and load-pull, offering insights to tunable network design. Third, a method to evaluate and optimize dual-RF input PAs, while catering to higher harmonic conditions and transistor parasitics, is proposed. The method is validated by a PA design having a peak power of 44 +/- 0.9 dBm and 6 dB OPBO PAE exceeding 45% over a 1–3 GHz bandwidth. The results in this thesis contribute with a novel device and analysis of high efficiency and wideband PAs, aiding in the design of key components for future energy efficient and high capacity wireless systems.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.