Evaluation of robot structures : For applications that require high performance, safety and low energy consumption

University dissertation from Eskilstuna : Mälardalen University

Abstract: Emerging application areas, such as safe robotics and green robotics, greatly enable the extension of robot automation to new application processes in different industry segments. Successful realization of industrial robots for such application areas is highly influenced by the type of robot structure that is adopted for the design. Therefore, researchers have recently pursued new robot structures with improved characteristics resulting in the current availability of a wide variety of potential robot structures from which to choose.Along with this, a difficult yet relevant challenge arises for robot designers to evaluate all the potential robot structures to select the best structure for new applications. This necessitates a need for tools or methods, which can aid robot designers or end-users to perform evaluation on robot structures in the early design stages. The research objective pursued in this thesis aims to address this need. To realize this objective, design knowledge must be advanced on ways or methods to quantitatively evaluate robot structures.This project adopts research through design as a research methodology, which is based on the action-reflection approach. In this thesis, experiential knowledge is gained on how to evaluate a set of two robot structures based on various requirements. This is done by carrying out simulation-based evaluation tasks on serial and parallelogram linkage articulated robot structures. Based on the acquired experiential knowledge, a simulation-based evaluation framework is proposed in this thesis, which can be used by robot designers or end-users to enhance the likelihood of selecting the most suitable robot structure for a new application process.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.