Electronic Structure and Film Morphology Studies of PTCDI on Metal/Semiconductor Surfaces

Abstract: Organic semiconductors have received increasing attention over the last decades as potential alternatives for inorganic semiconductors. The properties of these films are highly dependent on their structural order. Of special interest is the interface between the film and its substrate, since the structure of the interface and the first few layers decide the growth of the rest of the film. The interface structure is determined by the substrate/molecule interactions, the intermolecular interactions and the growth conditions.In this thesis, thin films of the organic semiconductor PTCDI have been studied using complementary microscopy and spectroscopy techniques on two metal-induced surface reconstructions, Ag/Si(111)-√3×√3 and Sn/Si(111)-2√3×2√3. These surfaces were chosen because they have different reactivities and surface periodicities. On the weakly interacting Ag-terminated surface, the film growth is mainly governed by the intermolecular interactions. This leads to well-ordered films that grow layer-by-layer. The interaction with the substrate is through electron charge transfer to the molecules from the substrate. This results in two different types of molecules with different electronic structure, which are identified using both STM images and PES spectra. On the more strongly interacting Sn-terminated surface the molecules adsorb in specific adsorption geometries and form 1D rows. At around 0.5 ML coverage the rows also interact with each other and form a 4√3×2√3 reconstruction and beyond one ML coverage the growth is characterized as island growth. The interaction with the substrate is mainly due to heavy electron charge transfer from the Sn atoms in the substrate to the C atoms in the imide group, but also the N atoms and the perylene core in PTCDI are involved. In these systems, the interactions with the surfaces result in new states inside the HOMO-LUMO gap, and the intermolecular interactions are dominated by O···H and O···H-N hydrogen bondings.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)