VCSEL Equivalent Circuits and Silicon Photonics Integration

Abstract: The vertical-cavity surface-emitting laser (VCSEL) is a light source of great importance for numerous industrial and consumer products. The main application areas are datacom and sensing. The datacom industry uses GaAs-based VCSELs for optical interconnects, the short-reach fiber optical communication links used to transfer large amounts of data at high rates between units within data centers and supercomputers. In the area of sensing, VCSELs are largely used in consumer products such as smart phones (e.g. face ID and camera auto focus), computer mice, and automobiles (e.g. gesture recognition and LIDAR for autonomous driving). In this work, an advanced physics-based equivalent circuit model for datacom VCSELs has been developed. The model lends itself to co-design and co-optimization with driver and receiver ICs, thereby enabling higher data rate transceivers with bandwidth limited VCSELs and photodiodes. The model also facilitates an understanding of how each physical process within the VCSEL affects the VCSEL static and dynamic performance. It has been applied to study the impact of carrier transport and capture on VCSEL dynamics. The work also includes micro-transfer-printing of GaAs-based single-mode VCSELs on silicon nitride photonic integrated circuits (PICs). Such PICs are increasingly used for e.g. compact and highly functional bio-photonic sensors. Transfer printing of VCSELs enables the much-needed on-PIC integration of power efficient light sources. The bottom-emitting VCSELs are printed above grating couplers on the PIC and optical feedback is used to control the polarization for efficient coupling to the silicon nitride waveguide. Wavelength tuning, as required by the bio-sensing application, is achieved by direct current modulation.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)