Developing extended reality systems for manufacturing industry

Abstract: In the digital transformation of the manufacturing industry, computer-mediated reality, also known as extended technology reality (XR) technology is believed to be the foundation for realising the Industry 4.0 vision. XR technology, with its three representative forms, augmented reality (AR), mixed reality (MR) and virtual reality (VR) have created new ways for users and computer systems to interact. Although previous studies and pilot industrial projects have highlighted potential applications of XR technologies in manufacturing activities, it remains largely unadopted in current manufacturing. The goals of this thesis are to contribute to knowledge about integrating XR technology into manufacturing and helping the manufacturing industry benefit from the latest advancements in XR technologies. Thus, this thesis aims to bridge the knowledge gap and facilitate the process of integrating the latest XR technologies into manufacturing. In addressing the above purpose and aims, this research effort adopted a pragmatic approach to eleven empirical studies (based on real-world manufacturing problems within five companies) and two testbeds. Eleven XR systems, ranging from AR to VR, were developed and tested for applications covering all four phases of production: design, learning, operational and disruptive. Accordingly, this thesis has identified critical factors and reported the effects of integrating XR technologies into a manufacturing context. Furthermore, the framework dealing with the necessary steps to integrate XR technology into manufacturing activities was developed, explained and validated through internal as well as external cases. This has proved effective in guiding the process of integrating XR into manufacturing and assuring the quality of that integration.