Compact RF Integration and Packaging Solutions Based on Metasurfaces for Millimeter-Wave Applications

Abstract: The millimeter-wave frequency range has got a lot of attention over the past few years because it contains unused frequency spectrum resources that are suitable for delivering Gbit/s end-user access in areas with high user density. Due to the limited output power that the current RF active components can deliver in millimeter-wave frequencies, antennas with the features of low profile, high gain, high efficiency and low cost are needed to compensate free space path loss and increase the communication distance for the emerging high data rate wireless systems. Moreover, it is desired to have a compact system by integration of the antenna with passive and active components at high frequencies. In order to move towards millimeter-wave frequencies we need to face significant hardware challenges, such as active and passive components integration, packaging problems, and cost-effective manufacturing techniques. The gap waveguide technology shows interesting characteristics as a new waveguide structure. The main goal of this thesis is to demonstrate the advantages of gap waveguide technology as an alternative to the traditional guiding structures to overcome the problem of good electrical contact due to mechanical assembly with low loss. This thesis mainly focuses on high-gain planar array antenna design, integration with passive and active components, and packaging based on gap waveguide technology.  We introduce several low-profile multilayer corporate-fed slot array antennas with high gain, high efficiency and wide impedance bandwidth operating at the millimeter-wave frequency band. A system demonstration consisting of two compact integrated antenna-diplexer and Tx/Rx MMICs for Frequency-division duplex (FDD) low latency wireless backhaul links at E-band is presented to show the advantages of gap waveguide technology in building a complete radio front-end. Moreover, the use of several new manufacturing methods, such as die-sink Electric Discharge Machining (EDM), direct metal 3-D printing, and micro-molding are evaluated to fabricate gap waveguide components in a more effective way. Furthermore, a novel air-filled transmission line, so-called multi-layer waveguide (MLW), that exhibits great advantages such as low-cost, simple fabrication, and low loss, even for frequencies beyond 100 GHz, is presented for the first time. To constitute an MLW structure, a rectangular waveguide transmission line is formed by stacking several thin metal layers without any electrical and galvanic contact requirement among the layers. The proposed concept could become a suitable approach to design millimeter-wave high-performance passive waveguide components, and to be used in active and passive components integration ensuring mass production at the same time.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)