Investigating magnetic fields in the solar chromosphere

Abstract: Solar plage has been the topic of many studies since its initial description in the mid 19th century, but as of yet it has not been understood to the point where we can reproduce all aspects of these active regions in quasi-realistic numerical models. To a large extent, this is caused by an incomplete understanding of the magnetic structure that drives the activity in these areas. Detailed measurements have been done of the magnetic field configuration of plage in the photosphere since the late 20th century, but only a handful of papers have managed to make any measurements at all in the higher situated chromosphere, despite the fact that the magnetic field vector of plage is important in understanding chromospheric magnetic fields in general, as well as the heating processes of the higher atmosphere. In Pietrow et al. (2020) we add to these measurements by introducing what is to our knowledge the first full Stokes inversion of chromospheric plage, which allowed us to estimate the magnetic field vector at an optical depth of logτ = -3.5. The obtained value is |B| = 440 ± 90 G in the plage with an inclination of 10° ± 16° with respect to the local vertical. Our reported magnetic field strength matches with a recent study by Morosin et al. (2020), but is higher by a factor of two or more compared to previous studies that measured the field using other methods. Additionally we measure an average magnetic field strength of |B| = 300 ± 50 G in a fibrillar region close to the plage.In this thesis we explore the difficulties of measuring this magnetic field vector. Since plage exists in a complex environment, we will begin with a general description of the structure and properties of the solar atmosphere and the layers from which it is composed, as well as review the types of active regions that can be found in the solar atmosphere. Our focus then narrows to the chromosphere, the diagnostic properties of spectral lines that are sensitive to this layer (mainly the \cair line), plage regions, and plage chromospheric magnetic fields. Additionally, we touch upon the theory of radiative transfer and how physical characteristics of the atmosphere can be inferred from polarised light. We also give attention to the observing process with the Swedish 1-m Solar Telescope (SST) and the workings of the reduction pipeline and post-reduction methods as well as the process spectropolarimetric inversions.Finally, once we have understood why and how this project has been done, we summarize our findings and compare them to current literature.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)