Conformal chemical vapor deposition of boron carbide thin films

Abstract: The sustainability goals of the modern world and the fascinating properties of sub-micron scale materials promote development of materials in thin film form. Thin films are materials that have thicknesses ranging from sub-nanometer to several micrometers, synthesized by various deposition techniques. They are used for diverse applications, such as light emitting diodes, solar cells, semiconductor chips, etc. The primary objective of this research project is to develop a chemical vapor deposition (CVD) process for conformal boron carbide thin films. Since boron carbide is a promising neutron converter material for solid-state neutron detectors, the process was validated by depositing on prototype detector chips.  In this study, triethylboron (TEB) was used as single source CVD precursor to deposit boron carbide thin films. The initial experiments focused on low reaction rate deposition by depositing in a kinetically limited regime. The films deposited at ≤450 °C in 8:1 aspect ratio micro-trench structures were highly conformal and show a stoichiometry of about B5.2C. We attribute this observed conformality to the slow reaction kinetics of the TEB at the low deposition temperature enabling the diffusive transport of the precursor molecule down the trench. The depositions carried out on the prototype detector-chips show promising results.  We expand our studies to investigate a new strategy with the prospect of improving the step coverage at higher temperatures for better film properties. We hypothesize that adding a suitable heavier molecule, diffusion additive, with an appropriate partial pressure can enhance the step coverage by pushing the lighter precursor molecule via competitive co-diffusion. It was tested by adding Xe gas to the boron carbide CVD from TEB. The result shows that with this diffusion additive the step coverage was improved from 0.71 to 0.97. From our experimental results, we suggest a competitive diffusion model that can be adapted to other CVD processes to enhance the film step coverage.  The CVD process is further validated by depositing onto carbon nanotube membranes. The initial results show that the process was able to afford evenly deposition around the individual nanotubes in the carbon nanotube membrane. Raman spectroscopy measurements show a similar D-band to G-band intensity ratio before and after the deposition indicating that no defects were induced in the nanotubes.      

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.