Investigating Software-based Clock Synchronization for Industrial Networks

Abstract: A rising level of industrialization and advances in Industry 4.0 have resulted in Industrial Internet of Things (IIoT) gaining immense significance in today’s industrial automation systems. IIoT promises to achieve improved productivity, reliability, and revenues by connecting time-constrained embedded systems to “the Internet”. New opportunities bring with them challenges, and in particular for industrial networks, massively interconnected IIoT devices communicating in real-time,  require synchronized operation of devices for the ordering of information collected throughout a  network. Thus,   a   time or clock synchronization service that aligns the devices’ clocks in the network to ensure accurate timestamping and orderly event executions, has gained great importance. Achieving adequate clock synchronization in the industrial domain is challenging due to heterogeneous communication networks and exposure to harsh environmental conditions bringing interference to the communication networks. The investigative study based on existing literature and the envisioned architecture of the future industrial automation system unveils that the key requirements for future industrial networks are to have a cost-effective, accurate, scalable, secured, easy to deploy and maintain clock synchronization solution. Today’s industrial automation systems employ clock synchronization solutions from a wide plethora of hardware and software based solutions. The most economical, highly scalable, maintainable software-based clock synchronization means are best candidates for the identified future requirements as their lack in accuracy compared to hardware solutions could be compensated by predictive software strategies. Thus, the thesis’s overall goal is to enhance the accuracy of software-based clock synchronization in heterogeneous industrial networks using predictable software strategies. The first step towards developing an accurate clock synchronization for heterogeneous industrial networks with real-time requirements is to investigate communication parameters affecting time synchronization accuracy. Towards this goal, we investigated actual industrial network data for packet delay profiles and their impact on clock synchronization performance.  We further analyzed wired and wireless local area networks to identify key network parameters for clock synchronization and proposed an enhanced clock synchronization algorithm CoSiNeT for field IoT devices in industrial networks. CoSiNeT matches well with state-of-the-practice SNTP and state-of-the-art method SPoT in good network conditions in terms of accuracy and precision;  however,  it outperforms them in scenarios with degrading network conditions.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.