Thermal stability and age hardening of TiN-based thin films

University dissertation from Linköping : Linköpings universitet

Abstract: The work presented herein is about characterizing phase transformations in cathodic arc plasma-deposited Ti1-xA1xN and Ti1-zZrzN thin films for cutting tool applications, and to investigate how the films' mechanical properties are affected by such transformations during thermal annealing. Post-deposition analyses were carried out using X-ray diffraction (XRD), transmission electron microscopy (TEM), nanoindentation, four-point probe sheet resistance, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Rutherford backscattering spectrometry (RBS). For Ti1-xA1xN, residual stresses relax through annihilation of depositioninduced lattice defects in the 500-900°C regime. Stress relaxation is a multiple process with activation energies of 2.0-2.9 eV. At ~900°C, phase transformation from the as-deposited metastable single-phase [NaCl] structure into the thermodynamically stable [NaCl]-TiN and [wurtzite]-A1N proceeds through spinodal decomposition, during which [NaCl]-TiN and [NaCl]-A1N domains form from the [NaCl]-Ti1-x,A1xN matrix. Activation energies for the transformation process of 2.9-3.5 eV indicate grain boundary and defect-assisted segregation of Ti and A1. The films age harden during transformation, with an increase in film hardness from the as-deposited condition of ~35 GPa to ~36-37 GPa following post-deposition annealing at 900°C, while pure TiN softens to ~20 GPa. Hardening originates from coherency strains due to lattice-mismatch between [NaCl]-structure TiN and AIN domains formed during initial stages of spinodal decomposition. Ti1-xA1xN-coated cutting tools can therefore be said to 'adapt' to the high temperatures and cutting forces encountered during in-service machining operations. For Ti1-zZrzN, calculations on phase stabilities using density-functional theory (OFT) show that the pseudo-binary system exhibits a miscibility gap. Thus, there is a driving force for transformation from the as-deposited metastable single-phase [NaCl] structure into [NaCl]-structure TiN and ZrN components. For such compositions, an essentially retained film hardness after post-deposition annealing at 1100-1200°C has been observed. The principal hardening mechanism for this particular nitride thin film system is proposed to be solid-solution hardening through localized lattice strain fields originating from difference in atomic radius of Ti and Zr. Finally, single-crystal Ti2A1N thin films belonging to the so-called MAX-phase class of materials have been successfully synthesized by reactive magnetron sputtering. The results are promising for the prospects of synthesizing a range of MAX-phase nitride materials as single-crystal thin films and polycrystalline coatings.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.