Crystallization in Constrained Polymer Structures : Approaching the Unsolved Problems in Polymer Crystallization

Abstract: The knowledge regarding certain issues in polymer crystallization e.g. the possible existence of short–lived mesophases remains inconclusive due to experimental limitations. Polymers undergo chain folding upon crystallization, which introduces some complications that are not found in crystallization of low molar mass materials. Chain–folded crystals are far from their equilibrium shape and they rearrange rapidly at the crystallization temperature. This, together with the slow experimental techniques traditionally used, impedes the observation of the originally formed structures. To approach this problem, molecularly constrained polymer structures (in which the crystallizing chains are fixed at one end whereas the other end is free to move) have been studied by X–ray diffraction, differential scanning calorimetry, polarized optical microscopy, transmission electron microscopy and atomic force microscopy. The crystallization studies performed in star–branched polyesters showed that the dendritic cores have a pronounced effect on the crystallization of the linear poly(ε–caprolactone) (PCL) arms attached to them. The star–branched polymers showed slower crystal rearrangement, higher equilibrium melting point, higher fold surface free energy, moderately lower crystallinity, and a greater tendency to form spherulites in comparison with linear PCL. The crystal unit cell was the same in both linear and star–branched PCL. Single crystals of the star–branched polymers were more irregular and showed smoother fold surfaces than linear PCL crystals. No sectorial preference was observed in the crystals of the star–branched polymers upon melting while the single crystals of linear PCL showed earlier melting in the {100} sectors than in the {110} sectors. Some of the differences observed can be attributed to the dendritic cores, which must be placed in the vicinity of the fold surface and thus influence the fold surface structure, the possibility of major crystal rearrangement and the presence of a significant cilia phase during crystal growth causing diverging crystal lamellae and consequent spherulite formation. The attachment of the many crystallizable chains to a single core reduces the melt entropy, which explains the higher equilibrium melting point of star–branched PCL. The crystallization behavior of a series of poly(ethylene oxybenzoate)s was also studied. The polymers showed a profound tendency for crystal rearrangement during melting even at high heating rates. The Hoffman–Weeks extrapolation method was found to be unsuitable to calculate the equilibrium melting point of the samples studied because the melting point vs. crystallization temperature data were sensitive to the variations in crystallisation time, which led to significant variations in the equilibrium melting points obtained.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)