β-lactam combinations against multidrug-resistant Enterobacterales : Exploring combination effects and resistance development

Abstract: The β-lactam antibiotics are a cornerstone in treating bacterial infections, but the increasing prevalence of antibiotic resistance worldwide threatens their effectiveness. The main driver of β-lactam resistance is the production of β-lactamases, which are bacterial enzymes that inactivate the antibiotic. Moreover, resistance to multiple antibiotic classes is common in β-lactamase producing bacteria, further limiting treatment options. At the same time, few novel antibacterial agents are reaching the market. To address this challenge, antibiotic combination therapy is employed to enhance the effects of existing drugs against multidrug-resistant bacteria. Yet, there is a lack of knowledge regarding which antibiotics to combine to achieve the best effect. The investigations in this thesis evaluate the potential and limitations of combinations involving β-lactams, β-lactamase inhibitors and colistin against multidrug-resistant Enterobacterales in vitro. In the first paper, we investigated resistance mechanisms to three commonly used β-lactam/β-lactamase inhibitor combinations (BLBLIs) in an Escherichia coli strain encoding multiple β-lactamases. We found that β-lactamase gene amplifications were a key driver of resistance, with variations in the amplification pattern depending on the BLBLI combination. Clinical resistance could be reached by gene amplifications for ampicillin-sulbactam and piperacillin-tazobactam, whereas ceftazidime-avibactam resistance required multiple genetic changes. In the second paper, we evaluated the efficacy of double-carbapenem combinations against E. coli and Klebsiella pneumoniae producing carbapenemases (KPC-2, OXA-48, NDM-1, and NDM-5). Synergistic effects were most commonly observed against OXA-48-producing strains, whereas the efficacy was low against KPC-2 and negligible against NDM producers. In the third and fourth papers, we evaluated the antibacterial activity of colistin in combination with BLBLIs. Considering that reduced membrane permeability is associated with decreased susceptibility towards BLBLIs, adding colistin may be beneficial since its membrane-disrupting effect may increase the entry of other drugs. In paper three, we showed synergistic effects with colistin and ceftazidime-avibactam against a KPC-2-producing K. pneumoniae strain with porin deficiencies. However, when systematically assessing the impact of porin loss on the synergistic potential of colistin in combination with BLBLIs in paper four, we did not find any clear association between porin loss and synergy. These studies provide insight into the therapeutic potential and limitations of combinations, including β-lactam antibiotics against strains with different setups of resistance genes. More research is required to understand how to best use the newly introduced BLBLI combinations to preserve their activity and enhance the value of the available antibiotics for future generations.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.