Spin Torque Oscillator Modeling, CMOS Design and STO-CMOS Integration

Abstract: Spin torque oscillators (STOs) are microwave oscillators with an attractive blend of features, including a more-than-octave tunability, GHz operating frequencies, nanoscale size, nanosecond switching speed and full compatibility with CMOS technology. Over the past decade, STOs' physical phenomena have been explored to a greater extent, their performance has been further improved, and STOs have already shown great potential for a wide range of applications, from microwave sources and detectors to neuromorphic computing. This thesis is devoted to promoting the STO technology towards its applications, by means of implementing the STO's electrical model, dedicated CMOS integrated circuits (ICs), and STO-CMOS IC integration.An electrical model, which can capture magnetic tunnel junction (MTJ) STO's characteristics, while enabling system- and circuit-level designs and performance evaluations, is of great importance for the development of MTJ STO-based applications. A comprehensive and compact analytical model, which is based on macrospin approximations and can fulfill the aforementioned requirements, is proposed. This model is fully implemented in Verilog-A, and can be used for efficient simulations of various MTJ STOs. Moreover, an accurate phase noise generation approach, which ensures a reliable model, is proposed and successfully used in the Verilog-A model implementation. The model is experimentally validated by three different MTJ STOs under different bias conditions.CMOS circuits, which can enhance the limited output power of MTJ STOs to levels that are required in different applications, are proposed, implemented and tested. A novel balun-low noise amplifier (LNA), which can offer sufficient gain, bandwidth and linearity for MTJ STO-based magnetic field sensing applications, is proposed. Additionally, a wideband amplifier, which can be connected to an MTJ STO to form a highly-tunable microwave oscillator in a phase-locked loop (PLL), is also proposed. The measurement results demonstrate that the proposed circuits can be used to develop MTJ STO-based magnetic field sensing and microwave source applications.The investigation of possible STO-CMOS IC integration approaches demonstrates that the wire-bonding-based integration is the most suitable approach. Therefore, a giant magnetoresistance (GMR) STO is integrated with its dedicated CMOS IC, which provides the necessary functions, using the wire-bonding-based approach. The RF characterization of the integrated GMR STO-CMOS IC system under different magnetic fields and DC currents shows that such an integration can eliminate wave reflections. These findings open the possibility of using GMR STOs in magnetic field sensing and microwave source applications.