Data-Driven Approaches for Sparse Reflectance Modeling and Acquisition

Abstract: Photo-realistic rendering and predictive image synthesis are becoming increasingly important and utilized in many application areas ranging from production of visual effects and product visualization to digital design and the generation of synthetic data for visual machine learning applications. Many essential components of the realistic image synthesis pipelines have been developed tremendously over the last decades. One key component is accurate measurement, modeling, and simulation of how a surface material scatters light. The scattering of light at a point on a surface (reflectance and color) is described by the Bidirectional Reflectance Distribution Function (BRDF); which is the main research topic of this thesis. The BRDF describes how radiance, light, incident at a point on a surface is scattered towards any view-point from which the surface is observed. Accurate acquisition and representation of material properties play a fundamental role in photo-realistic image synthesis, and form a highly interesting research topic with many applications. The thesis has explored and studied appearance modeling, sparse representation and sparse acquisition of BRDFs. The topics of this thesis cover two main areas. Within the first area, BRDF modeling, we propose several new BRDF models for accurate representation of material scattering behaviour using simple but efficient methods. The research challenges in BRDF modeling include tensor decomposition methods and sparse approximations based on measured BRDF data. The second part of the contributions focuses on sparse BRDF sampling and novel highly efficient BRDF acquisition. The sparse BRDF sampling is to tackle tedious and time-consuming processes for acquiring BRDFs. This challenging problem is addressed using sparse modeling and compressed sensing techniques and enables a BRDF to be measured and accurately reconstructed using only a small number of samples. Additionally, the thesis provides example applications based on the research, as well as a techniques for BRDF editing and interpolation. Publicly available BRDF databases are a vital part of the data-driven methods proposed in this thesis. The measured BRDF data used has revealed insights to facilitate further development of the proposed methods. The results, algorithms, and techniques presented in this thesis demonstrate that there is a close connection between BRDF modeling and BRDF acquisition; efficient and accurate BRDF modeling is a by-product of sparse BRDF sampling. 

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.