Sustainability-, Buildability- and Performance-driven Structural Design

Abstract: The construction, maintenance and operation of infrastructure networks represent substantial impacts, both positive and negative, in all three dimensions of sustainability: economic, social and environmental. The greatest possibility to reduce the negative impacts and increase the positive ones is at the early design stage of construction projects. One way of achieving that is by using performance-based requirements. However, the use of performance-based requirements requires design processes and methods that support better-informed choices in design. The aim of this thesis is to propose a conceptual framework supporting well-informed choices in the early design stage of civil engineering projects. The thesis is based on a number of case studies related to the development of new structures, materials, construction methods, as well as structural engineering design and analysis methods. This provided a comprehensive view on the overall design process and allowed to identify potential for improvements in structural design. In addition, a set-based parametric design method was developed to meet the need to evaluate a large number of design alternatives according to criteria in the early design stage. The proposed framework integrates these advanced structural design methods and technologies with data-driven multi-criteria decision analysis. This supports better-informed choices in the early design stage taking into account the sustainability, buildability and structural performance of the design alternatives.