Advancing isothermal nucleic acid amplification tests : Towards democratization of diagnostics

Abstract: Modern healthcare is the result of scientific advancement across disciplines and has enabled us to understand the rationale behind many diseases and how to treat or cure them; but still a myriad of unanswered questions remains. Especially infectious diseases play an important role in healthcare as they pose a constant threat for global health and well-being. This was painfully highlighted in this year's ongoing COVID-19 pandemic with more than 40 million people infected and over 1 million deaths. Pandemics like this have not only devastating effects on global health but also economy.Therefore, scientific research in the field of infectious diseases is paramount to ensure outbreak control and surveillance of emerging threats. Current healthcare relies heavily on the diagnosis of infectious diseases in centralized healthcare centers thereby overlooking the access of molecular diagnostics for other areas such as airports, home-testing and especially the developing world with its limited resources. Towards this, various isothermal nucleic acid amplification technologies have been developed that hold the promise to bring state-of-the-art molecular diagnostics into these areas as they are versatile, sensitive and specific, and cost-effective. One such technique is rolling circle amplification which was used in this thesis.This research work provides an overview of the developments in biochemistry, related disciplines and their combination to design methods for diagnostic platforms tackling infectious diseases. The studies conducted in this work can be considered as individual modules for addressing challenges, like typing of pathogens and disease-related antibodies, and inexpensive bulk as well as digital quantification and simplified assay schemes. These approaches and their combinations aim to bring rolling circle amplification-based assay schemes into the molecular diagnostic field and towards decentralized healthcare.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)