Simulating Behavioral Level On-Chip Noise Coupling

University dissertation from Sundsvall : Mid Sweden University

Abstract: In this thesis, noise coupling simulation is introduced into the behavioral level. Methods andmodels for simulating on-chip noise coupling at the behavioral level in a design flow are presentedand verified for accuracy and validity. Today, designs of electronic systems are becoming denserand more and more mixed-signal systems such as System-on-Chip (SoC) are being devised. Thisraises problems when the electronics components start to interfere with each other. Often, digitalcomponents disturb analog components, introducing noise into the system causing degradation ofthe performance or even introducing errors into the functionality of the system.Today, these effects can only be simulated at a very late stage in the design process, causinglarge design iterations and increased costs if the designers are required to return and makealterations, which may have occurred at a very early stage in the process.This is why the focus of this work is centered on extracting noise coupling simulation modelsthat can be used at a very early design stage, such as at the behavioral level and then follow thedesign through the various design stages. To achieve this, SystemC is selected as a platform andimplementation example for the behavioral level models. SystemC supports design refinement,which means that when designs are being refined and are crossing the design levels, the noisecoupling models can also be refined to suit the current design.This new method of thinking in primarily mixed-signal designs is called Behavioral levelNoise Coupling (BeNoC) simulation and shows great promise in enabling a reduction in the costsof design iterations due to component cross-talk and simplifies the work for mixed-signal systemdesigners.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.