Methods for Simulation and Characterization of Nonlinear Mechanical Structures

University dissertation from Karlskrona : Blekinge Institute of Technology

Abstract: Trial and error and the use of highly time-consuming methods are often necessary for modeling, simulating and characterizing nonlinear dynamical systems. However, for the rather common special case when a nonlinear system has linear relations between many of its degrees of freedom there are particularly interesting opportunities for more efficient approaches. The aim of this thesis is to develop and validate new efficient methods for the theoretical and experimental study of mechanical systems that include significant zero-memory or hysteretic nonlinearities related to only small parts of the whole system. The basic idea is to take advantage of the fact that most of the system is linear and to use much of the linear theories behind forced response simulations. This is made possible by modeling the nonlinearities as external forces acting on the underlying linear system. The result is very fast simulation routines where the model is based on the residues and poles of the underlying linear system. These residues and poles can be obtained analytically, from finite element models or from experimental measurements, making these forced response routines very versatile. Using this approach, a complete nonlinear model contains both linear and nonlinear parts. Thus, it is also important to have robust and accurate methods for estimating both the linear and nonlinear system parameters from experimental data. The results of this work include robust and user-friendly routines based on sinusoidal and random noise excitation signals for characterization and description of nonlinearities from experimental measurements. These routines are used to create models of the studied systems. When combined with efficient simulation routines, complete tools are created which are both versatile and computationally inexpensive. The developed methods have been tested both by simulations and with experimental test rigs with promising results. This indicates that they are useful in practice and can provide a basis for future research and development of methods capable of handling more complex nonlinear systems.