Electron Energy Loss Spectroscopy of III-Nitride Semiconductors

University dissertation from Linköping : Linköping University Electronic Press

Abstract: This Licentiate Thesis covers experimental and theoretical investigations of the bulk plasmon response to different compositions and strain states of group III-nitride materials. Investigated materials were grown using magnetron sputtering epitaxy and metal organic chemical vapour deposition and studied by Rutherford backscattering spectrometry, X-ray diffraction, electron microscopy and electron energy loss spectroscopy (EELS).It is shown that low-loss EELS is a powerful method for a fast compositional determination in AlxIn1-xN system. The bulk plasmon energy of the investigated material system follows a linear relation with respect to lattice parameter and composition in unstrained layers.Furthermore, the effect of strain on the bulk plasmon peak position has been investigated by using low-loss EELS in group III-nitrides. We experimentally determine the AlN bulk plasmon peak shift of 0.156 eV per 1% volume change. The AlN peak shift was corroborated by full potential calculations (Wein2k), which reveal that the bulk plasmon peak position of III-nitrides varies near linearly with unit cell volume variations.Finally, self-assembled ternary Al1-xInxN nanorod arrays with variable In concentration have been realized onto c-plane sapphire substrates by ultra-high-vacuum magnetron sputtering epitaxy with Ti0.21Zr0.79N or VN seed layer assistance. The nanorods exhibit hexagonal cross-sections with preferential growth along the Al1-xInxN c-axis. A coaxial rod structure with higher In concentration in the core was observed by scanning transmission electron microscopy in combination with low-loss EELS.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.