Regulatory Effects of TGF-β Superfamily Members on Normal and Neoplastic Thyroid Epithelial Cells

University dissertation from Uppsala : Acta Universitatis Upsaliensis

Abstract: Thyroid growth and function is partly regulated by growth factors binding to receptors on the cell surface. In the present thesis, the transforming growth factor-β (TGF-β) superfamily members have been studied for their role in regulation of growth and differentiation of both normal and neoplastic thyroid epithelial cells.TGF-β1 is a negative regulator of thyrocyte growth and function. However, the importance of other TGF-β superfamily members has not been fully investigated. TGF-β1, activin A, bone morphogenetic protein (BMP)-7 and their receptors were found to be expressed in porcine thyrocytes. In addition to TGF-β1, activin A was also found to be a negative regulator of thyroid growth and function, and both stimulated phosphorylation and nuclear translocation of Smad proteins. Furthermore, TGF-β1 and epidermal growth factor (EGF) demonstrated a synergistic negative effect on thyrocyte differentiation. Simultaneous addition of the two factors resulted in a loss of the transepithelial resistance and expression of the epithelial marker E-cadherin. This was followed by a transient expression of N-cadherin.Despite the extremely malignant character of anaplastic thyroid carcinoma (ATC) tumor cells, established cell lines are still responsive to TGF-β1. A majority of the cell lines were also found to be growth inhibited by BMP-7. BMP-7 induced cell cycle arrest of the ATC cell line HTh 74 in a dose- and cell density-dependent manner. This was associated with upregulation of p21CIP1 and p27KIP1, decreased cyclin-dependent kinase (Cdk) activity and hypophosphorylation of the retinoblastoma protein (pRb). TGF-β1, and to some extent also BMP-7, induced the expression of N-cadherin and matrix metalloproteinase (MMP)-2 and -9. Stimulation of HTh 74 cells with TGF-β1 increased the migration through a reconstituted basement membrane indicating an increased invasive phenotype of the cells.Taken together, these data show that TGF-β superfamily members not only affect growth and function of normal thyroid follicle cells but may also, in combination with EGF, play a role in cell dedifferentiation. This study additionally suggests that the TGF-β superfamily members may be important for the invasive properties of ATC cells.