Studies in Efficient Discrete Algorithms

University dissertation from Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematics

Abstract: This thesis consists of five papers within the design and analysis of efficient algorithms.In the first paper, we consider the problem of computing all-pairs shortest paths in a directed graph with real weights assigned to vertices. We develop a combinatorial randomized algorithm that runs in subcubic time for a special class of graphs.In the second paper, we present a polynomial-time dynamic programming algorithm for optimal partitions of a complete edge-weighted graph, where the edges are weighted by the length of the unique shortest path connecting those vertices in the a priori given tree (shortest path metric induced by a tree). Our result resolves, in particular, the complexity status of the optimal partition problems in one-dimensional geometric (Euclidean) setting.In the third paper, we study the NP-hard problem of partitioning an orthogonal polyhedron P into a minimum number of 3D rectangles. We present an approximation algorithm with the approximation ratio 4 for the special case of the problem in which P is a so-called 3D histogram. We then apply it to compute the exact arithmetic matrix product of two matrices with non-negative integer entries. The computation is time-efficient if the 3D histograms induced by the input matrices can be partitioned into relatively few 3D rectangles.In the fourth paper, we present the first quasi-polynomial approximation schemes for the base of the number of triangulations of a planar point set and the base of the number of crossing-free spanning trees on a planar point set, respectively.In the fifth paper, we study the complexity of detecting monomials with special properties in the sum-product expansion of a polynomial represented by an arithmetic circuit of size polynomial in the number of input variables and using only multiplication and addition. We present a fixed-parameter tractable algorithms for the detection of monomial having at least k distinct variables, parametrized with respect to k. Furthermore, we derive several hardness results on the detection of monomials with such properties within exact, parametrized and approximation complexity.