Structural and Functional Studies on Evolutionary Repurposing of H-box/NC-proteins : From Host Factor to Virus Protein

Abstract: The Picornaviridae are a large family of biomedically important viruses causing diseases such as the common cold, hepatitis A and polio in humans and foot-and-mouth disease in cattle. These diseases have great impact on people’s everyday life and cause economical losses all around the world. To date, no antiviral treatments are available. In attempts to identify potential drug targets for novel antiviral therapies, a human protein was identified as a common host factor for several enteroviruses, a genus within the picornavirus family. This host factor, PLAAT3, facilitates genome transfer from the virus particle into the cytoplasm early in the viral lifecycle prior to virus clearance by autophagy. PLAAT3 is part of a human phospholipid-modifying enzyme family of five members, PLAAT1-5, which all have a conserved H-box/NC-motif forming the active site of these enzymes as well as a hydrophobic C-terminal region that is critical for enzymatic function. This H-box/ NC-motif is also found in the 2A locus of some picornaviruses, suggesting that these viruses might have acquired the protein through horizontal gene transfer to become independent of the human host factor.This thesis focuses on understanding the structural mechanism allowing picornavirus infection. Therefore, two members of the PLAAT-family were studied together with viral 2A proteins sharing the H-box/NC-motif.PLAAT3 was studied with the aim to elucidate its molecular mechanism underpinning its role as a host factor enabling genome transfer. PLAAT3 is composed of a globular N-terminal domain (NTD), whose structure has previously been determined, followed by a 30 amino acid long hydrophobic region (CTR). The catalytic site is located within the NTD, but the hydrophobic CTR is essential both for the catalytic activity as well as cellular localization of PLAAT3.PLAAT4 shares 50% sequence identity with PLAAT3 and exhibits a similar structure with a globular NTD followed by a hydrophobic tail. However, PLAAT4 shows a different activity pattern and displays enzymatic activity even in the absence of the CTR. By comparing the structural properties of PLAAT3 and PLAAT4 more can be understood of the structural characteristics enabling biological functions.The viral 2A proteins studied in this thesis originate from different picornavirus genera but all share the conserved H-box/NC-motif with the PLAAT-family. By investigating the structure and function of representative 2AH/NC proteins from different branches of the phylogenetic tree we aim to identify different steps of evolutionary repurposing to help us understand their role(s) in the viral lifecycle and determine the molecular mechanism allowing them to by-pass PLAAT3 as a host factor.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.