Design approaches for grouting of rock fractures; Theory and practice

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: Currently, cement base grout is used widely for sealing of the rock fractures in order to decrease the permeability of rock mass. Grouting procedure is one of the main tasks in cycle of rock excavation. In addition, huge amount of grout should be used during dam construction in order to seal the bedding and embankment walls. Therefore, considering the effect of grouting in duration and cost of the project, improving the design methods seems essential.In successful grouting the goal is to achieve the required sealing of fractures while avoiding ground movement due to applied pressure. Empirical methods have been developed to decide the pumping pressure, grout mix properties and stop criteria in order to fulfill requirements of successful grouting but there are ambiguities in using them and performance of them have been questioned. In these methods, assumptions and criteria are based on rules of thumbs and experiences from previous projects. The main uncertainties connected to these methods are identifying amount of grout spread and state of the fracture.Theoretical approach is an analytical solution which provides the chance for estimation of penetration length of the grout in real time. Furthermore, void filling fracture aperture and trend of the grout flow are estimated. As the development of this theory, elastic and ultimate jacking limits have been established based on the estimated penetration length. Therefore, it is possible to identify jacking of the fracture and estimate the state of the fracture in real time. In this research work, performance of this theoretical approach which is called “Real Time Grouting Control Method” has been validated through case studies. Properties of the used material, data for pressure and flow in addition to geological characteristics have been gathered from projects in sedimentary rock (Gotvand Dam in Iran and THX Dam in Laos) and hard rock (City Line Project in Sweden). This theory made it possible to observe overflow of grout and jacking of the fractures in sedimentary rock. In place of hard rock with mostly vertical fractures, this theoretical approach confirms usage of higher pressure which will shorten the grouting time.In this research work, variation in properties of the grout mix during grouting has been neglected. moreover, orientation of the fracture and its deformation due to injection pressure are not considered. Despite these assumptions, the results were promising and performance this approach in estimation of grout spread and identifying jacking of the fracture has been verified.