Energy-Water and Agriculture Nexus to Support the Sustainable Management of Shared Water Resources

Abstract: Throughout history, major rivers and shared water bodies have allowed civilizations to flourish, and the effective management of shared water bodies has always been a priority for societies and nations. Today, about 40% of the world’s population lives in proximity to the 286 transboundary river and lake basins that supply 60% of the world’s freshwater flows and make up about half of the Earth’s land area. Moreover, around 2 billion people in the world depend on groundwater sources, which include over 460 transboundary aquifer systems.The mismanagement of water resources can result in catastrophic disasters that are often exacerbated by a domino effect so that the impacts of poor water management often extend beyond the water system. The interdependency of the water system with other systems such as energy and food, or with land-use, highlights the importance of ”systems thinking and planning” in resource management. Such a concept is not easily encapsulated into policy-making processes in many parts of the world because consideration of the resource systems in isolation as individual entities and ‘silo” thinking still dominate. Climate change adds another layer of complexity and exacerbates the issue of water management. Another important factor is geographical location because precipitation varies among and within continents. This results in some regions suffering from water shortages and some regions facing the risks of water redundancy and floods. The concept of the Water-Energy-Food (WEF) nexus was introduced in 2011 as a response to help address some of the issues mentioned above. Over the last decade, research on the WEF nexus has gained momentum in both the policy and academic areas and several methods have been introduced to operationalize the nexus in different contexts. One of the flagship methodologies is the Transboundary Basins Nexus Approach (TBNA) introduced by the United Nations Economic Commission of Europe (UNECE) in 2015 and designed to assess the nexus in shared (transboundary) water basins.The aim of this thesis is to support shared water management by using the WEF-nexus approach to quantify the benefits of coordinated management, motivate cooperation, and identify trade-offs in the optimal use of resources. To achieve this aim, four research questions are explored over the course of four academic publications.  The first question explores the role of the energy sector in motivating shared water cooperation. The second question studies the risks and opportunities emerging from the interplay between climate and renewable energy in shared basins. The third question focuses on groundwater management and explores what benefits the consideration of the energy-water-agriculture nexus could bring to shared groundwater management in water-scarce areas. The fourth question examines how consideration of the energy-water-agriculture nexus could accelerate the low-carbon transition in the agricultural sector. These research questions are examined in two different, yet complementing, geographic locations. One is the Balkans in Southeastern Europe, which faces water redundancy and flood issues and the other is the Middle East and North Africa (MENA) region which suffers from water scarcity. In the first region, the Drina and the Drin River Basins represent the characteristics of Southeastern Europe while the North Western Sahara Aquifer System (NWSAS) and the Souss-Massa basin represent the characteristics of the MENA region. Three of the case applications are transboundary (Drina, Drin and NWSAS) while the last application (Souss-Massa Basin) is a subnational basin.  

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.