Bioactive Compounds from the Marine Sponge Geodia barretti : Characterization, Antifouling Activity and Molecular Targets

Abstract: The marine sponge Geodia barretti produces a range of secondary metabolites. Two of these compounds were isolated and elucidated guided by their ability to inhibit settlement of cypris larvae of the barnacle Balanus improvisus. The compounds barettin (cyclo-[(6-bromo-8-en-tryptophan)-arginine]) as E/Z mixture and 8,9-dihydrobarettin (cyclo-[6-bromo-tryptophan)-arginine]) were determined by using mass spectrometry, nuclear magnetic resonance and quantitative amino acid analysis.The bioactivity of these brominated dipeptides is in the range of antifouling substances used today: EC50 values of 0.9 µM (barettin) and 7.9 µM (8,9-dihydrobarettin). The compounds were successfully synthesised and then tested in a field experiment to evaluate their antifouling properties. The compounds were incorporated in four different commerical, non-toxic marine coatings. The concentrations of the compounds were 0.1 and 0.01% (w/w) and coated panels were exposed to field conditions for eight weeks. The experiment evaluated the effect of barettin and 8,9-dihydrobarettin on recruitment of the barnacle B. improvisus and the blue mussel Mytilus edulis (major Swedish foulers). The most efficient paint was a SPC polymer, for which the reduction of recruitment of B. improvisus was 89% with barettin (0.1%) and 61% with 8,9-dihydrobarettin (0.1%). For M. edulis the reduction of recruitment was 81% with barettin (0.1%) and 72% with 8,9-dihydrobarettin (0.1%) with the same SPC paint. Furthermore, 14 analogs of barettin and dipodazine were synthesised and tested for their ability to inhibit larval settlement. Two of the analogs have a barettin scaffold and twelve have a dipodazine scaffold. Six of the analogs displayed significant settlement inhibition with the most potent inhibitor being benzo[g]dipodazine (EC50 value 0.034 µM). The effect of benzo[g]dipodazine was also shown to be reversible. Finally, an investigation of the mode of action was performed on 5-HT receptors. Barettin demonstrated a specific affinity to 5-HT2A, 5-HT2C and 5-HT4, while 8,9-dihydrobarettin interacted only with 5-HT2C of the receptor subtypes tested (5-HT1-5-HT7).

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)