Multivariate profiling of metabolites in human disease Method evaluation and application to prostate cancer

University dissertation from Umeå : Umeå Universitet

Abstract: There is an ever increasing need of new technologies for identification of molecular markers for early diagnosis of fatal diseases to allow efficient treatment. In addition, there is great value in finding patterns of metabolites, proteins or genes altered in relation to specific disease conditions to gain a deeper understanding of the underlying mechanisms of disease development. If successful, scientific achievements in this field could apart from early diagnosis lead to development of new drugs, treatments or preventions for many serious diseases.  Metabolites are low molecular weight compounds involved in the chemical reactions taking place in the cells of living organisms to uphold life, i.e. metabolism. The research field of metabolomics investigates the relationship between metabolite alterations and biochemical mechanisms, e.g. disease processes. To understand these associations hundreds of metabolites present in a sample are quantified using sensitive bioanalytical techniques. In this way a unique chemical fingerprint is obtained for each sample, providing an instant picture of the current state of the studied system. This fingerprint or picture can then be utilized for the discovery of biomarkers or biomarker patterns of biological and clinical relevance.In this thesis the focus is set on evaluation and application of strategies for studying metabolic alterations in human tissues associated with disease. A chemometric methodology for processing and modeling of gas chromatography-mass spectrometry (GC-MS) based metabolomics data, is designed for developing predictive systems for generation of representative data, validation and result verification, diagnosis and screening of large sample sets.The developed strategies were specifically applied for identification of metabolite markers and metabolic pathways associated with prostate cancer disease progression. The long-term goal was to detect new sensitive diagnostic/prognostic markers, which ultimately could be used to differentiate between indolent and aggressive tumors at diagnosis and thus aid in the development of personalized treatments. Our main finding so far is the detection of high levels of cholesterol in prostate cancer bone metastases. This in combination with previously presented results suggests cholesterol as a potentially interesting therapeutic target for advanced prostate cancer. Furthermore we detected metabolic alterations in plasma associated with metastasis development. These results were further explored in prospective samples attempting to verify some of the identified metabolites as potential prognostic markers.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)