The amyloid-β precursor protein (APP)-binding protein Fe65 and APP processing

Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by abnormal deposition of neurotoxic amyloid-β (Aβ) peptide. Aβ is generated by sequential cleavage of the amyloid-β precursor protein (APP) by β- and then γ-secretase. However, APP can also be processed by α- and γ-secretase, instead resulting in generation of neuroprotective sAPPα. Increased APP phosphorylation and altered expression levels of the brain enriched Fe65 protein have been observed in the brains of AD patients. Fe65 can not only interact with membrane tethered APP, but can also localized into the nucleus and act as a transcriptional regulator together with the APP intracellular domain (AICD), generated after γ-secretase processing. How APP processing, APP/Fe65 interaction, and the nuclear AICD/Fe65 complex is regulated has not yet been fully understood. The aim of this thesis was therefore to further elucidate how Fe65 is regulated and how APP Ser675 phosphorylation affects APP processing.We could identify several factors regulating Fe65. First, we identified that neuronal differentiation induces Fe65 phosphorylation (paper I), and that phosphorylated forms of Fe65 were preferentially localized outside the nucleus (paper II). Second, we found that the APP binding PTB2 domain of Fe65, rather than the previously proposed N-terminal WW domain, is important for the nuclear localization of Fe65 (paper II). In addition, we surprisingly found that mutation of S228 in the Fe65 N-terminus could increase the APP/Fe65 interaction (paper III). Third, both α- and γ-secretase inhibitors decreased Fe65 nuclear localization similarly, indicating an important role of α-secretase in regulating Fe65 nuclear localization (papers II and III). Lastly, we could in paper IV for the first time show that phosphorylation of APP at Ser675 regulates APP processing at the plasma membrane, resulting in reduced levels of sAPPα. These results, together with the observation that APP Ser675 phosphorylation occur in AD brains, suggest that Ser675 phosphorylation could contribute to AD pathology by decreasing α-secretase processing and instead increasing the levels of Aβ.In summary these studies have contributed to understanding of APP processing and the interplay between Fe65 and APP, two suggested key players in AD. 

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)