Efficient HTTP-based Adaptive Streaming of Linear and Interactive Videos

Abstract: Online video streaming has gained tremendous popularity over recent years and currently constitutes the majority of Internet traffic. As large-scale on-demand streaming continues to gain popularity, several important questions and challenges remain unanswered. This thesis addresses open questions in the areas of efficient content delivery for HTTP-based Adaptive Streaming (HAS) from different perspectives (client, network and content provider) and in the design, implementation, and evaluation of interactive streaming applications over HAS.As streaming usage scales and new streaming services emerge, continuous improvements are required to both the infrastructure and the techniques used to deliver high-quality streams. In the context of Content Delivery Network (CDN) nodes or proxies, this thesis investigates the interaction between HAS clients and proxy caches. In particular, we propose and evaluate classes of content-aware and collaborative policies that take advantage of information that is already available, or share information among elements in the delivery chain, where all involved parties can benefit. Asides from the users’ playback experience, it is also important for content providers to minimize users’ startup times. We have designed and evaluated different classes of client-side policies that can prefetch data from the videos that the users are most likely to watch next, without negatively affecting the currently watched video. To help network providers to monitor and ensure that their customers enjoy good playback experiences, we have proposed and evaluated techniques that can be used to estimate clients’ current buffer conditions. Since several services today stream over HTTPS, our solution is adapted to predict client buffer conditions by only observing encrypted network-level traffic. Our solution allows the operator to identify clients with low-buffer conditions and implement policies that help avoid playback stalls.The emergence of HAS as the de facto standard for delivering streaming content also opens the door to use it to deliver the next generation of streaming services, such as various forms of interactive services. This class of services is gaining popularity and is expected to be the next big thing in entertainment. For the area of interactive streaming, this thesis proposes, models, designs, and evaluates novel streaming applications such as interactive branched videos and multi-video stream bundles. For these applications, we design and evaluate careful prefetching policies that provides seamless playback (without stalls or switching delay) even when interactive branched video viewers defer their choices to the last possible moment and when users switches between alternative streams within multi-video stream bundles. Using optimization frameworks, we design and implement effective buffer management techniques for seamless playback experiences and evaluate several tradeoffs using our policies.  

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.