Applications of Solid-Phase Microextraction to Chemical Characterization of Materials Used in Road Construction

University dissertation from Stockholm : KTH

Abstract: Environmental and health aspects of road materials have been discussed for a long time, mostly regarding bitumen and bitumen fumes. However, just a few studies on other types of road materials have been reported. In this doctoral study, two types of materials, asphalt release agents and bituminous sealants, were investigated with regard to chemical characterization and emission profiles. Besides conventional test methods, solid-phase microextraction (SPME) technique was applied for emissions profiles screening and quantitative analysis.General description of main characteristics of asphalt release agents and bituminous sealants is given, and a comprehensive state-of-the-art on SPME technique is presented, especially on methodologies for analyzing mono- and polycyclic aromatic hydrocarbons (MAHs and PAHs) in different sample matrices.In the experimental study, chemical characterization of the two material types was performed using conventional methods, including fourier transform infrared spectroscopy - attenuated total reflectance (FTIR-ATR), gel permeation chromatography (GPC), mass spectrometry (MS) and gas chromatography – mass spectrometry (GC-MS). General patterns regarding functional groups and molecular weight distribution were studied. In the case of asphalt release agents, more detailed information on chemical compositions, especially the contents of MAHs and PAHs, was obtained.General information on emission proneness of asphalt release agents was obtained using thermogravimetric analysis (TGA) and MS. Using headspace(HS)-SPME and GC-MS, emission profiles of asphalt release agents were characterized at different temperatures, whereas the profiles of bituminous sealants were obtained solely at room temperature. The results presented were used for ranking the materials with regard to degree of total emission as well as emission of hazardous substances.The applicability of HS-SPME for quantitative analysis of MAHs in asphalt release agents and emulsion-based bituminous sealants was investigated. The use of a surrogate sample matrix was concerned, and experimental parameters influencing the HS-SPME procedure, such as equilibration and extraction time, as well as effects of sample amount and matrices, were studied. The methods were evaluated with regard to detection limit, accuracy as well as precision. Different calibration approaches including external calibration, internal calibration and standard addition were investigated. The determination of MAHs in asphalt release agents and emulsion-based bituminous sealants using HS-SPME-GC-MS was conducted.