New approaches to preparation of macroporous monoliths for use in liquid chromatography

University dissertation from Umeå : Umeå University, Department of Chemistry

Abstract: High performance liquid chromatography (HPLC) is one of the major techniques in separat-ion sciences. Faster separation and higher efficiency are required to meet ever-growing demands. Despite numerous studies and achievements on improving mass transfer in particulate packings discontinuity seems to be the cornerstone drawback in their development. Macroporous continuous beds or monoliths are therefore a promising alternative to the particle medium. This thesis deals with preparation of new monoliths used as carrier for HPLC. Two different approaches were developed for two polymer systems. One was based on polycondensation of epoxy resins and polyamines which were components of an oil-in-water emulsion. An epoxy resin mixture was dispersed in aqueous polyamine phase with the aid of a surfactant. The other involved a traverse of a ready-made polymer solution around its upper critical solution temperature (UCST). In other words, linear polyamides, non-covalently crosslinked polymers, dissolved in a solvent at temperature higher than their UCST followed by slow cooling to below the critical temperature to precipitate the polymers. Partly re-established hydrogen bonds resulted in the formation of crystallites that interconnected into a network structure. Factors controlling morphology and porosity of final products were investigated. The study also deals with surface modifying for chromatographic applications. Functionalization pathways attempted in the thesis were quaterization of inherent amine of the epoxy-based monoliths and grafting tentacle ion groups via glycidyl methacrylate by atom transfer radical polymerization (ATRP) for ion exchange chromatography (IEC).

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)