Optimization of confluent jets ventilation with variable airflow

Abstract: In recent years, applications of confluent jets for design of ventilation supply devices have been widely studied. Similarly, numerous studies have been made on the potential and application of variable air volume (VAV) in order to reduce the energy demand of ventilation systems. This study investigates the combination of confluent jets ventilation (CJV) and VAV, both in terms of the near-field flow behavior of the device and the impact on thermal comfort, indoor air quality and energy efficiency in conference room and classroom environments when the airflow rate is varied. For the investigation of CJV with VAV in a classroom environment two experimental studies were performed. One was a field study in a school classroom with a constant supply temperature and four cases with varying heat loads and airflow rates. The other took place in a laboratory environment with five cases, all with varying heat loads, supply temperatures and airflow rates. The two experimental studies measured mean age of air, air speeds and temperatures in the occupied zone. Both studies showed that CJV had higher energy efficiency and indoor air quality than conventional mixing ventilation. The main effects of lower supply temperatures were higher velocities in the occupied zone as well as lower temperatures due to higher energy efficiency . CJV produces mixing ventilation conditions at lower airflow rates (<4.2 ACH) and non-uniform conditions at higher airflow rates. The thermal comfort was similar to that of conventional mixing ventilation and had very small temperature gradients compared to displacement ventilation. For the investigation of CJV with VAV in a conference room environment three combined experimental and numerical studies were performed. One focused on the jet velocity profiles from the CJV supply device, the results of which were used as boundary conditions for the two other studies. The second study measured the conditions in the confluent jet development area and the occupied zone experimentally for six cases with different supply temperatures, airflow rates and nozzle matrix configurations. The results were used for validating the numerical model which was used in the last paper. The final paper was a parametric numerical study which used the response surface method to investigate the impact of four design variables: heat load, number of nozzles, airflow rate and supply temperature on energy efficiency, indoor air quality and thermal comfort. The results show that indoor air quality is increased with higher airflow rates. The energy efficiency has a negative correlation to the heat load but a positive correlation to the airflow rate which results in relatively stable heat removal effectiveness of 110% as heat load is increased and the VAV system compensates with higher airflow rates. The results also show that in a VAV system which aims at providing  uniform temperatures in the occupied zone, the thermal comfort is mostly dependent on a combination of the CLO value and the range of the airflow rates. At low CLO values the range of the airflow rate needs to be increased to create a satisfactory thermal climate.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.