Optimizing sampling of important events in complex biomolecular systems

Abstract: Proteins and DNA are large, complex molecules that carry out biological functions essential to all life. Their successful operation relies on adopting specific structures, stabilized by intra-molecular interactions between atoms. The spatial and temporal resolution required to study the mechanics of these molecules in full detail can only be obtained using computer simulations of molecular models. In a molecular dynamics simulation, a trajectory of the system is generated, which allows mapping out the states and dynamics of the molecule. However, the time and length scales characteristic of biological events are many orders of magnitude larger than the resolution needed to accurately describe the microscopic processes of the atoms. To overcome this problem, sampling methods have been developed that enhance the occurrence of rare but important events, which improves the statistics of simulation data.This thesis summarizes my work on developing the AWH method, an algorithm that adaptively optimizes sampling toward a target function and simultaneously finds and assigns probabilities to states of the simulated system. I have adapted AWH for use in molecular dynamics simulations. In doing so, I investigated the convergence of the method as a function of its input parameters and improved the robustness of the method. I have also worked on a generally applicable approach for calculating the target function in an automatic and non-arbitrary way. Traditionally, the target is set in an ad hoc way, while now sampling can be improved by 50% or more without extra effort. I have also used AWH to improve sampling in two biologically relevant applications. In one paper, we study the opening of a DNA base pair, which due to the stability of the DNA double helix only very rarely occurs spontaneously. We show that the probability of opening depends on both nearest-neighbor and longer-range sequence effect and furthermore structurally characterize the open states. In the second application the permeability and ammonia selectivity of the membrane protein aquaporin is investigated and we show that these functions are sensitive to specific mutations.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)