The Genetics of Speciation and Colouration in Carrion and Hooded Crows

University dissertation from Uppsala : Acta Universitatis Upsaliensis

Abstract: A fundamental goal in biological research is to gain an understanding of the evolutionary processes and genetic elements that drive speciation. Genes responsible for reproductive isolation in young divergent lineages are particularly poorly known. In this thesis, the speciation genetics of carrion (Corvus (corone) corone) and hooded (C. (corone) cornix) crows were studied. These taxa differ strikingly in colouration and meet in a narrow hybrid zone in Europe, yet appear to be very similar genetically. A major component of reproductive isolation is social selection on colour differences.First, we investigated the genetic basis of plumage divergence between carrion and hooded crows using a candidate gene approach. Nucleotide divergence was confirmed to be low, while there was no evidence for any of the sequenced genes to be associated with colour differences.Second, we performed a simulation study to assess the performance of RNA-seq, a relatively novel approach that we later employed ourselves. We asked how variation in transcriptome complexity and bioinformatic workflow affected the accuracy of gene expression profiling. We generally found reassuring robustness and made a number of specific recommendations.Third, we compared the corticosterone stress response of carrion and hooded crows. In accordance with the hypothesis that the degree of melanization and physiological traits are correlated due to pleiotropy, we found a higher stress response in hooded crows, and detected possibly associated gene expression in pituitary.Fourth, we investigated genomic divergence by assembling a hooded crow reference genome followed by whole-genome resequencing of four European population samples. Northern European carrion crows were more similar to hooded crows than to Spanish carrion crows, pointing towards rampant introgression far beyond the hybrid zone. Nevertheless, several narrow genomic regions harboured high between-taxon divergence and were potentially associated with phenotypic traits.Fifth, we compared whole-transcriptome gene expression profiles between crows, focusing on skin with developing feathers. We used a design that allowed to differentiate between taxon-specific, colour-specific and body patterning effects. Widespread underexpression of genes in the melanogenesis pathway was associated with grey colour, and we detected several genes that may contribute to colour divergence in this system.